Regulation of maternal Wnt mRNA translation in C. elegans embryos.

نویسندگان

  • Marieke Oldenbroek
  • Scott M Robertson
  • Tugba Guven-Ozkan
  • Caroline Spike
  • David Greenstein
  • Rueyling Lin
چکیده

The restricted spatiotemporal translation of maternal mRNAs, which is crucial for correct cell fate specification in early C. elegans embryos, is regulated primarily through the 3'UTR. Although genetic screens have identified many maternally expressed cell fate-controlling RNA-binding proteins (RBPs), their in vivo targets and the mechanism(s) by which they regulate these targets are less clear. These RBPs are translated in oocytes and localize to one or a few blastomeres in a spatially and temporally dynamic fashion unique for each protein and each blastomere. Here, we characterize the translational regulation of maternally supplied mom-2 mRNA, which encodes a Wnt ligand essential for two separate cell-cell interactions in early embryos. A GFP reporter that includes only the mom-2 3'UTR is translationally repressed properly in oocytes and early embryos, and then correctly translated only in the known Wnt signaling cells. We show that the spatiotemporal translation pattern of this reporter is regulated combinatorially by a set of nine maternally supplied RBPs. These nine proteins all directly bind the mom-2 3'UTR in vitro and function as positive or negative regulators of mom-2 translation in vivo. The net translational readout for the mom-2 3'UTR reporter is determined by competitive binding between positive- and negative-acting RBPs for the 3'UTR, along with the distinct spatiotemporal localization patterns of these regulators. We propose that the 3'UTR of maternal mRNAs contains a combinatorial code that determines the topography of associated RBPs, integrating positive and negative translational inputs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time Course of Degradation and Deadenylation of Maternal c-mos and Cyclin A2 mRNA during Early Development of One-Cell Embryo in Mouse

Early in the development of many animals, before transcription begins, any change in the pattern of protein synthesis is attributed to a change in the translational activity or stability of mRNA in the egg and early embryo. As a result, translational control is critical for a variety of developmental decisions, including oocyte maturation and initiation of preimplantation development. In this s...

متن کامل

Translational control of maternal glp-1 mRNA by POS-1 and its interacting protein SPN-4 in Caenorhabditis elegans.

The translation of maternal glp-1 mRNAs is regulated temporally and spatially in C. elegans embryos. The 3' UTR (untranslated region) of the maternal glp-1 mRNA is important for both kinds of regulation. The spatial control region is required to suppress translation in the posterior blastomeres. The temporal one is required to suppress translation in oocytes and one-cell stage embryos. We show ...

متن کامل

P-88: Assessing Expression Changes of Some Wnt Pathway Genes During Goat Early Embryonic Development

Background: The developmental competency of embryos is affected by several factors, including the developmental pathways and their elements. In mammalian species including goat, fertilized oocyte undergoes several divisions to form a structure called blastocyst. These events depend on the successful control of temporal and spatial expression of genes involved in genome activation. One of the cr...

متن کامل

Translational control of maternal RNAs.

Early development of many species depends on the temporal and spatial control of maternal gene products. This review discusses the control of maternal mRNAs that encode regulators of C. elegans embryogenesis. In the C. elegans embryo, maternal mRNA regulation is crucial to the patterning of early cell fates. Translational control of key mRNAs spatially organizes cell signaling pathways, localiz...

متن کامل

Processing bodies and germ granules are distinct RNA granules that interact in C. elegans embryos.

In somatic cells, untranslated mRNAs accumulate in cytoplasmic foci called processing bodies or P-bodies. P-bodies contain complexes that inhibit translation and stimulate mRNA deadenylation, decapping, and decay. Recently, certain P-body proteins have been found in germ granules, RNA granules specific to germ cells. We have investigated a possible connection between P-bodies and germ granules ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 140 22  شماره 

صفحات  -

تاریخ انتشار 2013